From text to vectors: Automating the analysis of interview data

Bruce Sherin Northwestern University bsherin@northwestern.edu

TRUSE June, 2010

The Conceptual Dynamics Project

The usual methods

- As researchers and practitioners, we'd like to know what's going on inside the mind of the science student.
- One way to do this: The medium of words.
- How do we get from the words to hypotheses about student thinking?
 - We use ourselves as scientific instruments.

The usual methods

- Interview students and videotape the interviews
- Code the videos:
 - Transcribe videos
 - Segment the transcripts
 - Induce a coding scheme
 - Apply the coding scheme to the segmented transcript
- O Tacitly assumed that humans must do the coding
 - To apply a coding scheme, need to understand natural language, pay attention to gestures, etc.
 - Inducing the coding scheme is even harder

Can any of this be automated?

- We want to automate both:
 - The induction of the coding scheme
 - Application of the coding scheme to code transcripts
- Why automation would be a good thing:
 - Coding is a lot of work
 - More importantly: Some support for human analysis
- Why it's a good time to investigate this:
 - Advances in computational linguistics
 - We have powerful computers

What's coming in this talk

- The data corpus: Interviews in which middle school students asked to explain the seasons.
- Computational linguistics: Vector space models
- Two categories of automated analysis:
 - 1. Given a coding scheme developed by human analysts, apply the scheme to a data corpus
 - 2. Both induce and apply a coding scheme
- This is super easy!

Data corpus: Explaining the seasons

- A collection of interviews in which middle school students were asked to explain the seasons.
- Our interview protocol, in brief:
 - 1. "Why is it warmer in the summer and colder in the winter?"
 - 2. Follow up questions for clarification
 - 3. Asked to make a drawing.
 - 4. Challenges for certain answers

Three categories of explanations

Jill gives a closer-farther explanation

Human coding

	CF	Side-based	Tilt-based	Shift	Total
First Coder	5	8	4	4	21
Second Coder	5	7	4	5	21

Kappa = .94 (almost perfect agreement)

Vector Space Models

The Conceptual Dynamics Project

Vector space models

- A passage of text is mapped onto a vector, typically in a high dimensional space.
- The direction the vector points corresponds to the meaning of the passage
- To find the similarity in meaning between two passages, find the dot product of the corresponding vectors.

Map a passage to a vector

sun	3 03
earth	2 .6
yeah	0
winter	1
summer	2.1

Its because the sun um we rotate around the sun like in an axis but its not a perfect circle and when and then like or not an axis like we orbit its like not a perfect circle its like egg shaped almost but not very noticeable and the sun the earth is on an axis on that orbit that when it goes around like there one part that closer and one part that farther so that kind of that explains why ...

Analyses that apply coding categories developed by humans

The Conceptual Dynamics Project

The earth orbits around the sun It takes one year for it to go around The earth orbits in an ellipse so that sometimes the earth is closer to the sun and sometimes it farther away from the sun When the earth is over here it closer to the sun it gets more heat so that makes it warmer and its summer When the earth is over here it farther from the sun it gets less heat from the sun and it colder So that when it winter

Coding the Jill transcript

Dot products between Jill's transcript vector and the idealized response vectors.

Closer-father	Side-based	Tilt-based
0.64	0.50	0.49

Deviationalization[™]

<u>Deviationalize</u>: Average the three vectors for the idealized answer documents and replace each one with their deviation from that average.

Jill Coded (after deviationalization)

Coding all 21 transcripts

	Agree	Disagree	Kappa
Student only transcript	14	2	0.81
Student+Interviewer	13	3	0.70

Leslie works it out

Coding segments of transcripts

- Assigning one code to an interview is a significant approximation
 - Students sometimes shift explanations
 - Students sometimes develop an explanation over a few minutes
- When researchers code, we frequently segment a transcript at a finer grain size.
- So: Slice the transcript documents into little segments and code those.
- Really my goal was to be able to code shifts. But I haven't succeeded in that yet.

Jill segmented

- Slice Jill's transcript into:
 - 100-word segments
 - Stepping forward by 25 words

50 words Step size: 10

25 words Step size: 10

10 words Step size: 5 words

Edgar segmented

Inducing a coding scheme with cluster analysis

The Conceptual Dynamics Project

Oustering transcripts

- The preceding method relies on humans to develop the coding scheme, as embodied in the "idealized answer" documents.
- What we'd really like is for the computer to both invent the coding schema and code.
- This needs cluster analysis, plus some more elaborate methods to map passages to vectors.

...

Its because the sun um we rotate around the sun like in an axis but its not a perfect circle. orbit its like not a perfect circle its like egg shaped almost but not very notice as and the 22572 sun the earth is on an axis on that orbit that when it goes around like there one earth that closer and one part that farther so that kind that explains why ... solar

2 1	Ali	Kurt	Randy	Richard	Amanda	Zelda	Kimberley	Beth	Robbie	Angela	Denise	Kelly	Edgar	William	ЯÌ	Ovadya	Vanessa	Mark	Deidra	Lesie	Jacob
2 0	Ali	Kurt	Randy	Richard	Amanda	Zelda	Kimberley	Beth	Robbie	Angela	Denise	Kelly	Edgar	William	ЛÌ	Ovadya	Vanessa	Mark	Deidra	Leslie	Jacob
1 9	Ali	Kurt	Randy	Richard	Amanda	Zelda	Kimberley	Beth	Robbie	Angela	Denise	Kelly	Edgar	William	ЛÌ	Ovadya	Vanessa	Mark	Deic	ra Leslie	Jacob
1 8	Ali	Kurt	Randy	Richard	Amanda	Zelda	Kimberley	Beth	Robbie	Angela	Denise	Kelly	Edgar	William	Jill	Ovadya	Vanessa	Mark	Deid	ra Leslie	Jacob
1 7	Ali	Kurt	Randy	Richard	Amanda	Zelda	Kimberley	Beth	Robbie	Angela	Denise	Kelly	Edgar	William	Jill	Ovadya	Vanessa	Mark	Deid	ra Leslie	Jacob
1 6	Ali	Kurt	Randy	Richard	Amanda	a Zelda N	Cimberley	Beth	Robbie	Angela	Denise	Kely	Edgar	William	Jill	Ovadya	Vanessa	Mark	Deid	ra Leslie	Jacob
1 5	Ali	Kurt	Randy	Richard	Amand	a Zeida	Kimberley	Bet	n Robbie	Angela	Denise	Kelly	Edga	r William	ı Jil	l Ovad	ya Vanessa	Mar	k	Deidra Lesi	ie Jacob
1 4	Ali	Kurt	Randy	Richard	Amand	a Zeida	Kimberley	Beti	h Robbie	Angela	Denis	e Kelly	Edga	r Willian	n Jil	l Ovac	lya Vanessa	Mai	k	Deidra Lesi	ie Jacob
1 3	Ali	Kurt	Randy	Richard	Amand	a Zeida	Kimberley	Beti	h Robbie	Angela	Denis	e Kelly	Edga	r Willian	n Jii	l Ovac	lya Vanessa	Mai	k [Deidra Lesi	ie Jacob
1 2	Ali K	lurt Ra	ndy	Richard	Amanda	i Zelda K	imberley	Beth	Robbie	Angela	Denise	e Kelly	Edgar	William	Jill	Ovad	ya Vanessa	Mar	k [Deidra Lesl	ie Jacob
1 1	Ali K	urt Ra	ndy l	Richard	Amanda	Zelda X	imberley	Beth	Robbie	Ange	la Denise	Kelly	Edgar	William	Jill	Ovad	ya Vanessa	Mar	k [Deidra Lesl	ie Jacob
1 0	Ali K	urt Ra	ndy i	Richard	Amanda	Zelda X	imberley	Beth	Robbie	Ange	la Denise	Kelly	Edgar	William		Jill Ovady	a Vanessa	Mar	k [Deidra Lesl	ie Jacob
9	Ali K	urt Ra	ndy	Richard	Amanda	Zelda K	imberley	Beth	Robbie	Ange	la Denise	Kelly	Edga	r William		Jill Ovady	a Vanessa	Mar	k [Deidra Lesl	ie Jacob
8	Ali k	Kurt Ra	indy Ric	hard	Amanda	Zelda Ki	mberley	Beth	Robbie	Angel	a Denise I	Kelly	Edgar	William	J	ill Ovady	a Vanessa	Mar	k] [Deidra Lesl	ie Jacob
7	Ali K	urt Ra	ndy Ric	hard	Amanda 2	Zelda Ki	mberley	Beth	Robbie	Angel	a Denise I	Kelly	Edg	ar Willian	n Jill (Ovadya V	/anessa	Mar	k] [Deidra Lesl	ie Jacob
6	Ali K	lurt Ra	ndy Ric	hard	Amanda 2	Zelda Ki	mberley	Beth	Robbie	A	ngela Der	rise Kell	y Edgar	William J	ill Ov	adya Var	nessa	Mar	<u>k</u> [Deidra Lesl	ie Jacob
5	Ali K	urt Ra	ndy Ric	hard	Amar	ida Zeld	a Kimberley	Beth	Robbie	Ar	ngela Der	rise Kell	y Edgar	William J	ill Ov	adya Var	nessa	Mar	k] [Deidra Lesl	ie Jacob
4	Ali K	urt Ra	ndy Ric	hard	Amar	ida Zeld	a Kimberley	Beth	Robbie		Angela (Denise P	Celly Edg	gar Willian	m Jill	Ovadya	Vanessa Ma	ark	[Deidra Lesl	ie Jacob
3	Ali B	Ali Kurt Randy Richard Amanda Zelda Kimberley Beth Robbie								Ar	ngela Der	nise Kell	ly Edga	r William	Jill O	vadya V	anessa Mar	[*] k		eidra Lesli	e Jacob

 We've effectively coded the transcripts by sorting into three categories. But what do the categories mean? Do they align with the human-derived scheme?

What do the clusters mean?

• Find the words in the training corpus with the largest dot product to the centroid of each cluster.

Cluste	er 1	Cluster 2	
tilted	0.485	closer 0.454	sid
away	0.420	summer 0.333	day
kind	0.329	winter 0.314	nig
towards	0.283	brings 0.214	time
mentioned	0.250	farther 0.199	mo
angles	0.220	northwest 0.199	rota
facing	0.220	summers 0.194	pos
hemisphere	0.219	pink 0.193	luna
axis	0.212	purple 0.192	sha
incident	0.212	reaches 0.191	rota

Cluster 3					
side	0.494				
day	0.400				
night	0.395				
ime	0.299				
moon	0.289				
rotates	0.271				
poster	0.264				
unar	0.240				
shadow	0.230				
rotation	0.227				

What do the cluster's mean?

Dot products between cluster centroids and idealized response vectors

6	Ali Kurt Randy Richard Amanda Zelda Kimberley Beth Robbie	Angela Denise Kelly Edgar William Jill Ovadya Vanessa Mark Deidra Leslie Jacob
5	Ali Kurt Randy Richard Amanda Zelda Kimberley Beth Robbie	Angela Denise Kelly Edgar William Jill Ovadya Vanessa Mark Deidra Leslie Jacob
4	Ali Kurt Randy Richard Amanda Zelda Kimberley Beth Robbie	Angela Denise Kelly Edgar William Jill Ovadya Vanessa Mark Deidra Leslie Jacob
3	Ali Kurt Randy Richard Amanda Zelda Kimberley Beth Robbie	Angela Denise Kelly Edgar William Jill Ovadya Vanessa Mark Deidra Leslie Jacob

Cluster 1					
kind	0.486				
planets	0.257				
axis	0.249				
motions	0.245				
away	0.240				
movement	0.232				
ecliptic	0.223				
learned	0.216				
objects	0.214				
planetary	0.198				

Clustering transcripts

• Comparison to human coders:

	Agree	Disagre e	Kapp a
Four Clusters	11	5	0.54
Six Clusters	12	4	0.62

Bottom line:

- For coding individual transcripts, agreement with human coders is so-so.
- Ability to induce a coding scheme is tantalizing.

Another complication

• What we really want to get at is underlying knowledge and processes of assembly.

Oustering segments of documents

- Try to find meanings at a smaller grain size in transcripts.
 - 1. Cut up all of the transcripts into small (25-word) segments.
 - End up with 606 segments.
 - 2. Compute the meaning of each in terms of their 200 dimension vector.
 - 3. Use cluster analysis to pull these into groups.

Three clusters of segments

sun	0.557854	2180	tilted	0.475581	239	winter	0.668527	622
orbit	0.315278	548	kind	0.460649	21	summer	0.624533	623
earth	0.286494	1895	striking	0.349523	21	hemisphere	0.312125	589
~	0.196327	25	concentrated	0.304906	37	southern	0.291326	293
solar	0.179732	1069	towards	0.280476	91	northwest	0.287605	10
ellipse	0.176945	25	sunlight	0.279226	250	northern	0.269531	551
distances	0.168432	29	warm	0.278318	166	day	0.265189	550
celestial	0.166542	126	hotter	0.267920	32	autumn	0.239734	53
evening	0.165143	11	hit	0.257450	42	night	0.229601	199
morning	0.164609	16	angle	0.254329	219	brings	0.208714	22

6 clusters of segments

Conclusions

The Conceptual Dynamics Project

Summary

- Typical methods
 - The field has tacitly assumed that you need humans to apply a coding scheme.
 - Inducing the coding scheme should be even harder
- The techniques described here:
 - Had no access to gestures, diagrams, facial expressions, etc.
 - They discarded still more information (e.g., word order)
- Nonetheless: Some relatively simple computational techniques can apparently do significant work

Summary

- Coded entire transcripts using idealized answers
 - Moderate agreement with human coders
- Coded segmented transcripts using idealized answers
 - Could not capture shifts reliably
 - Possible to work with segments as small as 10 words
- Induced a coding scheme by clustering transcripts
 - Coding scheme induced aligned with the human-derived scheme.
 - Coding of individual transcripts moderately good.
- Clustered segments of transcripts
 - It was possible to interpret clusters of 25-word segments.

Implications

- In the short term, the big win will not come from replacing humans in applying a coding scheme.
- Big win will come from *support* for human analysis
 - This is especially true for the automated analyses that induce the coding scheme
- Thus, paradoxically, the most immediate win may come from the computational analyses that seem more difficult, those that induce a coding scheme.

Outstanding issues and future work

- How should I deal with the huge parameter space?
- Some relatively easy extensions
 - Try some other areas of subject matter
 - Use this to answer a real research question
 - Automate the coding of shifts
- Techniques that go beyond Vector Space models
- The puzzle: Why does this work?

The End

Bruce Sherin bsherin@northwestern.edu

The Conceptual Dynamics Project